Supporting Information:
High-Throughput, High-Resolution Interferometric Light Microscopy of Biological Nanoparticles

Celalettin Yurdakul,† Oguzhan Avci,† Alex Matlock,† Alexander J. Devaux,†
Maritza V. Quintero,¶ Ekmel Ozbay,§ Robert A. Davey,‡ John H. Connor,‡ W.
Clem Karl,† Lei Tian,† and M. Selim Ünlü*,†

†Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
‡Department of Microbiology and National Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
¶Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
§Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara, Turkey

E-mail: selim@bu.edu
Figure S1: **Experimental validation of caSPIR.** a Experimental (upper two rows) images of 100 nm PS bead and theoretically (lower two rows) calculated PSFs corresponds to circular sector mask’s angle of axis of the asymmetry. b Experimental caSPIR image of a single 100 nm PS bead and cross-section profile. c Simulated caSPIR image of a delta function and cross-section profile. d 100 nm PS bead cross-section profile captured under the asymmetric illumination. The image is normalized with the background signal, followed by background subtraction. The standard deviation of the background is ~ 0.017.

S-2
Figure S2: **Circular sector angle sweep.**

- **a** Circular sector illustration and **b** PSF corresponds to 60°.
- **c** Cross-section profiles along the dash line in (b) for circular sector angles from 30 to 180. (Colorbar and normalized intensity values are scaled with arbitrary unit)
Figure S3: **Regularization parameter sweep.** Different solutions are generated by sweeping the regularization parameter (α) from $0.1 \times \alpha_0$ to $10 \times \alpha_0$, where $\alpha_0 = 0.01$ is the chosen parameter. (Top) Reconstructed caSPIR images of 250 nm separated nanobars. (Bottom) Cross-section profiles along the horizontal nanobars. The results demonstrate that the choice of the regularization parameter is not critical within the close range of the selected parameter.
Figure S4: L-curve for the Tikhonov regularization. The L-curve is calculated for caSPIR image using the 250 nm separated nanobars. The selected regularization parameter ($\alpha = 0.01$) is nearby the corner of the L-curve.
Figure S5: Fabrication non-uniformity in EBL sample. a caSPIR, b conventional SPIR, and c SEM images of nano-word *BU NANO*. Fabrication non-uniformity can be clearly seen at the corners of the nano-letters. (Scale bars are 1 µm)
Figure S6: **Conventional SPIR images of Ebola VLPs.** a-d Conventional SPIR images corresponds to caSPIR images in manuscript Fig. 4. Outsets in (c) are (Left) conventional and (Right) caSPIR images. Note that image scales are slightly different then Fig. 4 in manuscript. (Scale bars are 1 µm)